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ABSTRACT

In this paper, we present a deep learning approach for au-
tomatic categorization of age-related macular degeneration
(AMD). Faced with the deficiency of training data, we pro-
pose a solution to combine additional data to effectively
assist the classification task. During training process, the
retinal fundus images from two datasets are mapped into a
common feature space with adversarial domain adaptation to
reduce domain discrepancy. Moreover, we introduce center
loss to increase the intra-class compactness of the extracted
features to further improve the classification performance.
Experiments are conducted on three public fundus image
datasets: STARE, ODIR and iCHALLENGE-AMD (here-
inafter referred to as iAMD). Our method outperforms three
state-of-the-art classification models as well as other aug-
mentation approaches. The proposed approach provides a
general framework to handle the issue of training samples
with domain discrepancy.

Index Terms— AMD classification, adversarial domain
adaptation, discriminative features

1. INTRODUCTION

Age-related macular degeneration (AMD) is a common mac-
ular disease that is a leading cause of severe vision impair-
ment or even vision loss among people over the age of 50
[1], which can be categorized into two types: dry AMD and
wet AMD (neovascular). In recent years, deep learning tech-
niques have been widely employed by research communities
to detect early symptoms of AMD [2]. However, these meth-
ods all face the challenge of acquiring sufficient data sets with
AMD labels. Under such circumstances, it is reasonable to
utilize the image data from multiple datasets for training. But
the domain discrepancy between them hinders the adaptation
of predictive models across domains.

To tackle this issue, we propose a unified framework for
AMD classification inspired by domain adaptation. Our ap-
proach takes advantage of multiple training datasets by con-

?Corresponding authors: He Zhao (zhaohe@bit.edu.cn); Huiqi Li
(huiqili@bit.edu.cn).

sidering the discrepancy across domains. In addition, the la-
bel information is also leveraged to constrain the discrimina-
tive feature mapping. Our contributions are summarized as
follows:

• A new training scheme is proposed for AMD classifi-
cation, which takes the advantages of existing source
datasets in training new target dataset. It helps to solve the
problem of classification algorithms performing poorly on
a small dataset.

• We propose an efficient loss combination that consists of
adversarial loss for reducing cross-domain discrepancy
and center loss for generating the discriminative features.

• Our approach is extensively evaluated on three datasets
and the results show that our method surpasses the state-
of-the-art algorithms for AMD classification.

2. RELATED WORK

Deep learning has been proven effective on many public data
sets, which has also been investigated in AMD classification.
Burlina et al. [3] apply AlexNet to the automatic screening
of AMD. Peng et al. [4] also present a deep learning model
called DeepSeeNet as a simulation of the human grading of
AMD severity. Domain adaptation aims to transfer the rep-
resentations from a source dataset to a target dataset to mini-
mize their feature distributions. Maximum Mean Discrepancy
(MMD) measures the distance of two distributions in the re-
generated Hilbert space, and it is applied to the latent rep-
resentations in Deep Adaptation Network (DAN) [5]. Other
methods have taken advantage of adversarial losses for do-
main adaptation [6, 7, 8].

3. METHOD

In this paper, we propose a method to classify AMD images
based on adversarial networks with center loss constraint. De-
note the target dataset as Dt =

{
xit, y

i
t

}Nt

i
, where xit is the

image and yit is the corresponding label. Our goal is to learn a
model with the help of source dataset Ds =

{
xjs, y

j
s

}Ns

j
such

that the task obtains a higher accuracy when at test time. The
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(a) Normal, dry and wet AMD images
in ODIR dataset.

(b) Normal, dry and wet AMD images
in STARE dataset.

(c) Normal and AMD images in
iCHALLENGE-AMD dataset.

Fig. 1: Classifications from different datasets.

Fig. 2: An overview of the proposed model structure. There are two shared feature extractors G to learn the representations of
the target and source dataset respectively. D denotes the discriminator. Ct and CS with shared weights indicate the classifiers
that make a three-class classification with the extracted features fromG During testing, only the upper branch of the model with
fixed parameters is kept.

network architecture is shown in Fig.2. A siamese-like fea-
ture extractor G is proposed to learn the useful information
from both Dt and Ds. A domain discriminator D is utilized
to narrow the feature distribution between the two datasets.
To further improve the performance, the center loss is also
considered to pull features belonging to the same class closer
to generate discriminative features. In what follows, we will
introduce the details of our model.

3.1. Model Structure

Our Model includes three parts: feature extractor, classifier
and discriminator. The feature extractor consists of three
components including the backbone network ResNet-50,
global average pooling (GAP) layer and fully connected (FC)
layers, which finally leads the input image to a low dimension
feature vector f . The dimension reduction of the features can
be beneficial to the follow-up progresses which are used for
feature regularization. As to the classifier, it gives out the pre-
diction of the input image with FC layers. The discriminator
on the latent space, composed of three fully connected lay-
ers, is designed to alleviate the discrepancy of different data
domains. It aims to distinguish the feature fs from source
dataset and feature ft from target dataset. The discriminator
updates alternatively with the feature extractor and classifier
to make the training data with domain bias can be used to
train the same classifier after reducing their feature gap.

3.2. Loss Function

Our loss function consists of three parts: classification loss,
adversarial loss for reducing feature discrepancy between do-
mains, and center loss for generating discriminative features.

Adversarial Loss. To minimize the discrepancy of target
and source feature representation, the feature extractor and
domain discriminator play a minimax game. Based on the
feedback of the discriminator D, the feature extractor G is
updated with formulation given as:

Ladv,G =
1

2
Exs∼Ds (D (G (xs))− 1)

2 (1)

where G (xs) denotes the latent features of Ds. In this way,
the source data can generate a similar feature distribution to
the target domain and it can be used to train a robust classifier
for the target domain.

Classification Loss. The classification loss Lcls appears
in the form of cross-entropy loss which is effective for multi-
classification tasks. Since the weights for target and source
classifiers are tied, their classification losses are formulated
in the same way which are expressed as:

Lcls = −
C∑

k=1

I(y == k) log(p) (2)

where C denotes the number of categories, p is the proba-
bility that a sample belongs to category k predicted by the
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model, and I is the indicator function with value of one when
the condition is satisfied. Considering both target and source
datasets, the overall classification loss is expressed as:

Lcls = Lcls,t + γLcls,s (3)

where Lclst , and Lclss stand for the loss for target domain
and source domain, respectively; γ is the weight for source
domain, while target domain weight is set to one by default.

Center Loss. The center loss Lc minimizes the intra-class
distances of the deep features, which clusters the features
from same class. Considering the center loss on target and
source domain separately, the formulations can be written as:

Lc,t =
1

2

Nt∑
i=1

∥∥f t,i − cyt,i

∥∥2
2
, Lc,s =

1

2

Ns∑
j=1

∥∥fs,j − cys,j

∥∥2
2

(4)
where ft,i and fs,i represents the features of i-th sample ex-
tracted by CNN, cyt,i and cys,j denotes the yi-th and the yj-
th class center of the deep feature, N denotes the number of
samples. With the variety of features in the training process,
cy is updated following [9]. And the final center loss is given
as follows:

Lc = βtLc,t + βsLc,s (5)

where βt and βs are weights for target and source domain
respectively. The overall objective function is summarized
as:

L = αLadv,G + Lc + Lcls (6)

where α is the weight for adversarial loss. Specifically, the
center loss and the classification loss are computed in both
the target and source domain.

4. EXPERIMENTS

4.1. Experimental Setup

We validate our proposed adversarial adaptation method
among STARE [10] and ODIR [11] datasets with AMD la-
bels of three categories, which are dry AMD, wet AMD and
normal, and iAMD [12] dataset with two categories which
are AMD and normal. As a result, 55/55 images are used for
training and test on STARE, while 74/58 images are used on
ODIR dataset, 79/78 images are used on iAMD dataset.

The fundus images are preprocessed with normalization,
surrounding back area removal and resizing to an image with
size of 224 × 224. The backbone network of the feature ex-
tractor is ResNet-50 pre-trained on ImageNet. The results are
the mean accuracy of five-time experiments.

4.2. Experimental Results

We evaluate our AMD classification model across three do-
main shifts, where STARE, ODIR and iAMD act as target
dataset in turn. Classification accuracy and kappa coefficient

are used to measure the performance of different approaches.
Two training scenarios are considered here, which are train-
ing models on single dataset and on mixed dataset, respec-
tively. The results are shown in Table 1 (three-category clas-
sification) and Table 2 (two-category classification). Note that
other methods (e.g., ResNet-50) are pre-trained on ImageNet
and trained with two datasets together without any adaptation.
By simply mixing the training data of different datasets, the
performance sometimes will decrease or hardly improve. On
the contrary, our approach achieves the best accuracy by us-
ing source data in an efficient way. The kappa coefficient, as
an indicator for checking the consistency of the classification
model, has the same trend with the accuracy. It demonstrates
that the predictions are consistent with the actual classifica-
tion results. The above results justify the effectiveness of our
algorithm.

4.3. Ablation Experiments

Here we will demonstrate the contribution of the adversar-
ial domain adaptation and center loss. The influence of the
weights on loss function will be testified. The influence of the
weights on loss function will also be testified. Note that the
STARE dataset is treated as target domain and ODIR is used
as the source in the three-category classification experiments.

Different Composition of Training Sets
Data augmentation and data mixture are other ways to enlarge
training dataset. In this part, we will compare our approach
with these two kinds of methods. Four different training sets
are used for comparison, which are 1) original dataset, 2) the
mixture of two datasets, 3) augmented original dataset, 4) Our
approach. The models are trained on them separately and
tested on the same data. The results are shown in Table. 3. It
demonstrate the operations of augmentation and mixture are
able to improve the performance by increasing the datasets,
while our approach obtains a large improvement by the dis-
crepancy reduction among datasets.

Efficacy of Adversarial Adaptation and Center Loss
To evaluate the efficiencies of the proposed losses, two sets
of ablation studies are conducted. The weight for classifica-
tion loss Lcls,t is fixed to one in the following experiments.
We evaluate the adversarial loss weight α with a value range
of [0.05, 1]. The classification accuracy can achieve 92.12%
when the adversarial loss weight is set to 0.1, which is much
higher than the baseline. Based on the effect of adversarial
loss with weight of 0.1, the center loss on target dataset Lc,t

is then considered with a weight range from 0.5 to 10. The
highest accuracy is 93.33% when γ = 10, which is approxi-
mately 1.2% percent larger compared with the situation where
only Ladv,G exists. The experimental results presented above
verify that the adversarial domain adaptation and center loss
both contribute to improve the classification performance.
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Table 1: Three-category classification performance of different methods evaluated by accuracy and kappa.

STARE ODIR
Trained on

STARE
Trained on

STARE + ODIR
Trained on

ODIR
Trained on

ODIR + STARE
Model Acc κ Acc κ Acc κ Acc κ

ResNet-50 86.67% 0.80 94.55% 0.93 89.09% 0.85 89.66% 0.84

VGG-19 76.36% 0.64 70.30% 0.55 72.99% 0.57 68.39% 0.50

EfficientNet-b5 87.88% 0.82 95.09% 0.93 86.21% 0.77 89.08% 0.83

Our approach - - 96.97% 0.95 - - 92.53% 0.88

Table 2: Two-category classification performance of different
methods evaluated by accuracy and kappa.

STARE
Trained on

STARE
Trained on

STARE + ODIR
Trained on

STARE + iAMD
Model Acc κ Acc κ Acc κ

ResNet-50 98.18% 0.96 97.45% 0.94 98.55% 0.97

VGG-19 98.55% 0.97 97.09% 0.94 92.73% 0.83

EfficientNet-b5 96.73% 0.93 89.09% 0.73 97.09% 0.93

Our approach - - 99.64% 0.99 98.91% 0.97

ODIR
Trained on

ODIR
Trained on

ODIR + STARE
Trained on

ODIR + iAMD
Model Acc κ Acc κ Acc κ

ResNet-50 94.14% 0.88 78.62% 0.55 91.03% 0.82

VGG-19 89.31% 0.78 93.79% 0.66 85.52% 0.71

EfficientNet-b5 90.00% 0.79 83.10% 0.65 86.90% 0.73

Our approach - - 95.52% 0.91 95.17% 0.90

iAMD
Trained on

iAMD
Trained on

iAMD + ODIR
Trained on

iAMD + STARE
Model Acc κ Acc κ Acc κ

ResNet-50 80.00% 0.60 79.23% 0.58 80.00% 0.60

VGG-19 79.23% 0.58 79.23% 0.58 79.49% 0.59

EfficientNet-b5 80.51% 0.61 78.72% 0.57 78.21% 0.56

Our approach - - 82.05% 0.64 85.90% 0.72

4.4. Visualizations of Feature Distributions

In this section, we aim to justify that the feature extractor
trained by our proposed approach is more efficacious than the
baseline. The distribution of the extracted features from test
sets is visualized through t-SNE [13]. Fig.3(a) and Fig.3(b)
exhibit the representations of STARE test images in the la-
tent space when the network is trained by ResNet-50 and
our method respectively. The classification accuracies reach
87.273% and 96.364% in the two cases, individually. It can
be discovered from the comparison that the features of the
same class tend to be more clustered while features belonging
to different classes are more divergent for our approach. The
aforementioned experiment demonstrates that our method
learns a more effective representation of AMD data in feature
space than baseline model.

Table 3: Three-category classification performance of base-
line network ResNet-50 trained with different composition
of training sets compared to our approach. Ori.: Original
dataset; Aug.: Augmentation of the original dataset; Mix.:
Mixture of two datasets.

STARE ODIR

Training set Acc κ Acc κ

Ori. 86.67% 0.80 89.09% 0.85

Aug. 92.12% 0.88 91.38% 0.87

Mix. 94.55% 0.92 89.66% 0.86

Our approach 96.97% 0.95 92.53% 0.88

(a) (b)

Fig. 3: Visualization of the extracted features via t-SNE.
(a) Visualization of features generated by baseline model
(ResNet-50). (b) Visualization of features generated by our
model.

5. CONCLUSION

We propose a novel deep learning framework for the AMD
classification task based on adversarial domain adaptation and
center loss. To solve the dilemma of insufficient training data,
we introduce an additional dataset as the source for assisting
the classification of the target dataset. The images from the
multi-datasets are mapped into a shared feature space where
adversarial domain discriminator is employed to minimize
their domain discrepancy. Center loss is adopted to extract
more discriminative features for classification. According to
the experimental results, the proposed approach outperforms
state-of-the-art classification methods, and it achieves higher
classification accuracies by contrast with other data augmen-
tation ways. The proposed framework can be further extended
to other classification applications.
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